

The Potential for CAD in Ireland

Vicky Heslop – Methanogen Ltd

The Future of Biogas 3 - PROBIOGAS

Background

- Currently no CAD in Ireland
- 1st feasibility study for CAD in 1990
- 2002 EPA Study identified 10 viable CAD sites
- Manure and sufficient non-farm waste
- N.Kilkenny identified as one of 10 sites

Regulatory Conditions in 2005

- Draft Nitrates control of N & P & 4mths storage
- ABP <u>no</u> spread of fertiliser products containing meat
- Waste Stategy BMW for AD/compost grow 5x by 2010
- RE 13% of elec by 2010 7.2c/kwh for biomass
- RD&D funding for novel RE SEI
- NCCS 2008 60k tpa manure, 900k tpa fertiliser use
 large heat users in ETS carbon credits
- CAP reform uncertainty for small farms

N.Kilkenny

- Central to Southern Ireland
- Mixed farming, dairy, tillage, pigs
- High incidence of TB in cattle
- Mostly family farms
- Soils are dry/free draining to waterlogged
- Mostly fertile alluvial soils, except uplands
- Large areas gravel topsoil and limestone subsoil
- 2 major rivers, Nore & Barrow
- Small rural towns (250 people) de-populating
- Good major roads, small country lanes

Site Location

Feedstock available within 7km 143t/day

Biomass	Amount	DM	DM	Biogas 60%
	Ton/year	%	t/year	CH ₄ nm³/year
Cattle slurry	31,132	7	2,148	572,828
FYM	3,240	20	648	129,600
Dairy WWTP sludge	18,000	14	2,440	1,152,000
Manure and waste	52,372	10	5,236	1,854,428

50 farms with 5,700LSU on 2,300ha grassland & 485ha arable

- Sewage sludge from small rural works
- Household kitchen and canteen waste

Existing management

- 18,000tpa dairy sludge to 9,000ha landbank –grass
- 14%DM, 6.8kg N 20% to crop (1.4kgN), 7.8kg P
- Spreading controlled by P 19kg/ha (soil P=3)
- After manure 2,300ha grass needs 31.7tpa P
- Sludge applied to grass = 4,073tpa sludge (2.4t/ha)
- Application rate of Organic-N = 187kg/ha
- 5,700LSU at 170kg N/ha (2LSU/ha) = 2,850ha
- Farms have 2,300+485ha = 2,785ha

Need CAD to process manure and sludge for redistribution

Nutrient equation overall

	Tons pa	Total N	Av % N	Avail N	Р
sludge	18,000	6.80	20%	1.36	7.80
slurry	31,132	3.85	40%	1.54	0.73
FYM	3,240	4.50	30%	1.35	1.20
Total	52,372	256,396		76,836	166,188
digestate	49,753	5.16	70%	3.61	3.34

• Available N in digestate is 179,855kg pa

Increased utilisation means 103 tpa of N fertiliser is saved

Value of saved N eutrophication of groundwater is €86,500

Potential NMP

- As digestate manure & sludge used on arable land
- More material used on farms = over 10,000tpa
- Organic matter added to arable land
- Less Nitrogen lost to environment

Why?

Whole digestate & some liquor to arableLiquor only to grasslandP concentrated in fibre used in horticulture

Transport equation

- Now 13,937tpa sludge other land average extra 15km
 - 4,073tpa sludge in area average run 4km
 - 18,000tpa farm spreading of sludge 0.75km
 - 33,587tpa manure spread on farm 0.75km
 - 785tpa manure other land if available 3km
- With CAD 31,132tpa slurry collection from farms 4km
 - 3,240tpa FYM to CAD 4km
 - 16,952 tpa extra in delivery digestate products 4km
 - 48,084 farm spreading 0.75km
 - 4,288 fibre transported out of area 50km

With CAD an additional 190,000km travelled pa

Manure storage

Pre N Regs – farms had 2-3mths storage

- Cattle in for 5 mths mid Oct-mid March
- Spread in Dec/Jan depending on weather
- 2nd spread after 1st or 2nd cut silage

Post N Regs – farms to have min 4mths storage

- No spreading 15th Oct-15th Jan
- Need additional 50-100% more storage
- 60% capital grant
- Could have been for digested liquor

Smells

- Stored manure smells (farmers don't always notice!)
- 14%Dm dairy sludge remains sometime on grassland
- It has a strong and unpleasant smell

Ireland is becoming an urbanised rural community NIMBY

- Digested products have minimal offensive odour
- In normal conditions no odour after a few hours

Health

- N.Kilkenny has high incidence of TB
- Local vets say slurry spreading doesn't help

AD + pasteurisation will destroy most disease pathogens Improves plant health & therefore also animal health BUT not BSE

> Ireland Inc. has €7 billion meat export trade also large meat import trade

- Exempt cat 2 and catering waste with 3 week delay
- All other cat 2 must be rendered
- All other cat 3 needs 3 year delay, spreading to animal use

Greenhouse Gases

- Electricity sales
- Heat sales
- NPK substitution
- Transport fuel
- Manure storage
- Sludge storage
- CHP unburnt gas
- Manure/sludge/fertiliser

 CO_2 CO_2 CO_2 CO_2 CH_4 CH_4 CH_4 N_2O

tpa CO_2 - 1,856 - 1,217 299 32 6.3 189 273 446

- 3,709 tpa

Farmers economy

Arable • Needs new storage - no grant $-4,000m^3$

- Fertiliser 16tpa P saved 2tpa N needed
- Addition of organic matter ?
- Increased spreading costs 4,500tpa
- Grass New storage 60% grant 13,000 needed anyway
 - Farm alterations
 - Fertiliser savings 103tpa N no change P
 - Increased spreading costs 10,000tpa

Savings in fertiliser more than cover additional costs

The financial details – 143t/day – €4.3m

Costs	€
Capital financing	336,000
Storage financing	22,000
Maintenance	129,000
Labour/admin	118,000
Separation	40,000
Transport	111,000
Other	42,000

Revenue	€
Electricity (7.2c)	275,000
Heat (4c)	92,000
Gate fees (€12.50)	230,000

TOTAL €823,000

TOTAL €597,000

Operational loss of € 226,000pa

Summary of socio-economic benefits

- NMP 103tpa artificial N fertiliser saved €72,200
- Water eutrophication (25% art N) 25tpa &86,500
- Net GHG emission saved $-3,709 \text{ CO}_2$ tpa $\notin 74,180$
- Health ?
- Odour <u>- €17,000</u>

TOTAL €249,880

Total revenue earnings - €597,000pa

Socio-economic benefits are 42% of actual revenue

Conclusion 1 – the potential of CAD

- Re-distribution of nutrients in area
- Facilitates compliance with Nitrates Regulations
- Allows farmers to maintain stock numbers
- Improves a declining rural economy
- Protects animal health
- Reduces N loss to water 25tpa
- Reduces $GHG 3,709t CO_2$ pa
- Makes the area more pleasant to live in

Greater benefits if landfill wastes included

Conclusion 2 – what's needed

MORE INCOME

- Financial recognition of socio-economic benefits
- Allow high value waste (ABP)

– gas, gate fees, socio-economic

- Higher energy value
- Flexibility in N Regs recognise actual availability
- Better markets for heat